Deployment View
Deployment Scenario 1: Local Development (Docker)
Docker Command:
docker run -it \
-v $(pwd)/diagrams:/diagrams \
-v ~/.diag-agent:/root/.diag-agent \
-e ANTHROPIC_API_KEY=$ANTHROPIC_API_KEY \
diag-agent:latest \
create "System context diagram" --type c4
Deployment Scenario 2: CI/CD Pipeline
GitHub Actions Example:
- name: Generate Architecture Diagrams
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
DIAG_AGENT_HEADLESS: true
run: |
uvx diag-agent create-batch --input arch-requirements.txt --output ./docs/diagrams
Current (v0.1.0 - source distribution):
- name: Generate Architecture Diagrams
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
DIAG_AGENT_HEADLESS: true
run: |
git clone https://github.com/docToolchain/diag-agent.git
cd diag-agent
uv pip install .
uv run diag-agent create-batch --input arch-requirements.txt --output ./docs/diagrams
Future (when published to PyPI):
- name: Generate Architecture Diagrams
env:
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
DIAG_AGENT_HEADLESS: true
run: |
uvx diag-agent create-batch --input arch-requirements.txt --output ./docs/diagrams
Deployment Scenario 3: MCP Server for LLM Applications
Startup Command:
diag-agent serve \
--mcp \
--host 0.0.0.0 \
--port 8080 \
--url-mode \
--cors-origins "https://my-llm-app.com"
Infrastructure Requirements
| Component | Resource Requirements | Scaling | Availability |
|---|---|---|---|
diag-agent (CLI) |
Minimal (single invocation) |
N/A |
N/A |
diag-agent (MCP) |
512MB RAM, 1 CPU |
Horizontal (stateless) |
99.9% (load balanced) |
Kroki Fat-JAR |
1GB RAM, 2 CPU |
Single instance sufficient |
99% (restart on failure) |
LLM API |
External service |
N/A |
Provider SLA |
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.